Teaching intro data science

Maria Tackett Duke University Preparing to Teach August 6, 2022

Courses I teach

Data Science

Data science has become increasingly popular over the past 10 years...

Search term		+ Compare	
Search term			
Worldwide	/22 ▼ All categories ▼ Web Sea	arch 💌	
Internet over time			
			<u> </u>
100			
75			
50			
50 25			

...but what exactly does "data science" mean? Let's ask Google...

Search term		+ Compare	
Worldwide	/22 ▼ All categories ▼ Web	Search 🔻	
			<u> </u>
100			
75			
50			
25			

...but what exactly does "data science" mean? Let's ask Google...

...but what exactly does "data science" mean? Let's ask Google...

Data Science Definition - The Tech Terms Computer Dictionary https://techterms.com > definition > data_science

storing, and analyzing data to effectively extract useful information. The goal of data science is to gain insights and knowledge from any type of data — both structured

 $\mathbf{\wedge}$

Computer Science/IT

Software Development

Source: https://towardsdatascience.com/introduction-to-statistics-e9d72d818745

Machine Learning

Data Science

$\overbrace{}$ Math and Statistics

Traditional Research

Domains/Business Knowledge

Source: http://www.anlytcs.com/2014/01/data-science-venn-diagram-v20.html

2016 GAISE Report

- 1. Teach statistical thinking.
 - decision-making.
 - Give students experience with multivariable thinking.
- 2. Focus on conceptual understanding.
- 3. Integrate real data with a context and purpose.
- 4. Foster active learning.

5. Use technology to explore concepts and analyze data.

6. Use assessments to improve and evaluate student learning.

<u>Guidelines for Assessment and Instruction in Statistics Education - College Report (2016)</u>

Teach statistics as an investigative process of problem-solving and

Course Learning Objectives

By the end of the semester, you will...

- ✓ learn to explore, visualize, and analyze data in a reproducible and shareable manner
- \checkmark gain experience in data wrangling, exploratory data analysis, predictive modeling, and data visualization
- ✓ work on problems and case studies inspired by and based on realworld questions and data
- ✓ learn to effectively communicate results through written assignments and final project presentation

Learning objectives from <u>STA 199 Intro to Data Science at Duke University Fall 2021</u>

Traditional Intro Statistics vs. Intro Data Science

	Traditional Intro Statistics	Intro Data Science
Data	Structured, sometimes smaller data sets	Large data sets, structured and unstructured
Analysis purpose	Description, inference, interpretation	Description, inference, interpretation, prediction
Inference	Central Limit Theorem-based, more emphasis on equations	Simulation-based, more emphasis on conceptua understanding
Ethics	Sampling bias, misleading graphs	Sampling bias, misleading graphs, algorithmic bias, data privacy
Workflow	Focus on analysis workflow: exploration, inference / modeling, conclusion	"Start-to-finish" reproducible workflow
Computing	Range of technology from calculators to statistical programming	Technology for large data sets and reproducibility primarily statistical programming

Α	В	С	D	Е	F	G
	year	id	county	trauma	totalvisits	admit
1	2013	106014233	Alameda	0	43286	6186
2	2013	106190758	Los Angeles	0	61915	8648
3	2013	106300032	Orange	0	54217	5670
4	2013	106301205	Orange	0	69558	10596
5	2013	106301262	Orange	LEVEL II	42994	9796
6	2013	106304113	Orange	0	14529	921
7	2013	106380964	San Francisco	0	24783	2068
8	2014	106014233	Alameda	LEVEL II	44068	4820
9	2014	106190758	Los Angeles	0	50818	7370
10	2014	106301262	Orange	LEVEL II	43440	10337
11	2014	106304113	Orange	0	13632	1088
12	2014	106380964	San Francisco	0	25213	2015

Examples from <u>Data Science in a Box</u>

Examples from <u>Data Science in a Box</u>

89 Deux tableaux très riches de com- 10660 position, d'une belle exécution, & dont le mérite est très remarquable, chacun de 17 pouces 3 lignes de haut, sur 23 pouces de large; le premier, peint sur bois, vient du Cabinet de Madame la Comtesse de Verrue; il représente un départ pour la chasse : on y voit sur le devane un enfant fur un cheval blanc, un homme qui donne de la trompe pour rassembler les chiens, un Fauconnier & d'autres figures distribuées agréablement dans toute la largeur du tableau; deux chevaux qui boivent à une fontaine; à droite dans le coin une jolie maison de campagne surmontée d'une terrasse, & sur laquelle sont des gens à table, d'autres qui jouent des instru-

Tableaux.

ments; des arbres & des fabriques enrichissent agréablement le fond. Le second tableau, qui est fur toile, fait voir un terrein d'une grande étendue, près la mer qui est à gauétendue, voir aussi des vaisfeaux : on y voir aussi des bagages que l'on décharge d'un charriot, des hommes, des femmes, des enfants, deux chevaux qui mangent, & des mulets chargés de bagages.

Examples from <u>Data Science in a Box</u>

name R1777 L1768 L177 R177 R177 R176 R177 R176 R177 R176 P177 R177 L176 R177 J177 R176 J177

89 Deux tableaux très riches de com- 10660 position, d'une belle exécution, & dont le mérite est très remarquable, chacun de 17 pouces 3 lignes de haut, sur 23 pouces de large; le premier, peint sur bois, vient du Cabinet de Madame la Comtesse de Verrue; il représente un départ pour la chasse : on y voit sur le devant un enfant sur un cheval blanc, un homme qui donne de la trompe pour rassembler les chiens, un Fauconnier & d'autres figures distribuées

e	sale	lot	position	dealer	year	origin_author	origin_cat	school_pntg	diff_origin	logprice	price	count	subject
7-59	R1777	59	0.248945148	R	1777	D/FL	D/FL	D/FL	0	9.210340372	10000	1	Fte flamand
8-109a	L1768	109	0.534313725	L	1768	F	0	F	1	5.703782475	300	1	Paysage et
'8b-76	L1778b	76	0.503311258	L	1778	D/FL	D/FL	D/FL	0	5.123963979	168	1	L'interieur d
7-131a	R1777	131	0.552742616	R	1777	D/FL	D/FL	D/FL	0	6.748173209	852.5	1	Matelot tena
/3-24a	R1773	24	0.421052632	R	1773	D/FL	D/FL	D/FL	0	6.684611728	800	1	(2) Deux ma
64-139	R1764	139	0.27689243	R	1764	F	F	F	0	4.394449155	81	1	Un lapin, un
7-211a	R1777	211	0.890295359	R	1777	F	F	F	0	7.094234846	1205	1	Buste de jeu
67-196	R1767	196	0.616352201	R	1767	D/FL	D/FL	D/FL	0	7.787382026	2410	1	Une Tabagie
/6-103	R1776	103	0.311178248	R	1776	D/FL	D/FL	D/FL	0	8.006367568	3000	1	Joueurs de
67-157b	R1767	157	0.493710692	R	1767	D/FL	D/FL	D/FL	0	7.150701458	1275	1	(2) Deux Tab
/5-13	P1775	13	0.1733333333	Р	1775	D/FL	D/FL	D/FL	0	6.173786104	480	1	Une jeune fi
7-130	R1777	130	0.548523207	R	1777	D/FL	D/FL	D/FL	0	6.29156914	540	1	Autoportrait
4-16b	L1764	16	0.262295082	L	1764	I	0	I	1	2.48490665	12	1	(2) Fleurs &
1-65b	R1771	65	0.380116959	R	1771	F	F	F	0	3.871201011	48	1	(2) Filles de
5-16	J1775	16	0.8	J	1775	F	F	F	0	6.802394763	900	1	Jupiter, sous
65-40b	R1765	40	0.655737705	R	1765	F	F	F	0	6.416732283	612	1	(2) une Soirž
9-23	J1779	23	1	J	1779	F	F	F	0	1.098612289	3	1	Paysage orr

Examples from <u>Data Science in a Box</u>

imdb.com/chart/top/

IMDb Charts

IMDb Top 250 Movies

IMDb Top 250 as rated by regular IMDb voters.

SHARE

Showing	250 Titles	Sort by: Ranki	∽ ↓†	
	Rank & Title	IMDb Rating	Your Rating	
	1. The Shawshank Redemption (1994)	\{ 9.2	24	Ħ
and the	2. The Godfather (1972)	☆ 9.2	$\stackrel{\wedge}{\sim}$	Ħ
	3. The Dark Knight (2008)	\ 9.0	\overleftrightarrow	Ħ
2012	4. The Godfather: Part II (1974)	\ 9.0	$\stackrel{\wedge}{\sim}$	Ħ
	5. 12 Angry Men (1957)	★ 8.9	$\overset{\wedge}{\swarrow}$	Ħ
S CAR	6. Schindler's List (1993)	★ 8.9	24	ŧ
2	7. The Lord of the Rings: The Return of the King (2003) 쑺 8.9	24	Ħ
Paurficmat	8. Pulp Fiction (1994)	* 8.9	$\stackrel{\wedge}{\sim}$	Ħ

Examples from <u>Data Science in a Box</u>

	imdb.com	n/chart/top/
--	----------	--------------

IMDb Charts

IMDb Top 250 Movies

IMDb Top 250 as rated by regular IMDb voters.

SHARE

	Showing 250 Titles Sort by: Ranking		
	Rank & Title	IMDb Your Rating Rating	J
	1. The Shawshank Redemption	(1994) 4 9.2	Ŧ
250) × 4		
itle		year rating	

##	# A t	tibb	le: 250 × 4			
##	r	rank	title	year	rating	
##	<j< td=""><td>int></td><td><chr></chr></td><td><dbl></dbl></td><td><dbl></dbl></td><td>+</td></j<>	int>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	+
##	1	1	The Shawshank Redemption	1994	9.2	
##	2	2	The Godfather	1972	9.2	_
##	3	3	The Dark Knight	2008	9	1.00
##	4	4	The Godfather Part II	1974	9	
##	5	5	12 Angry Men	1957	8.9	
##	6	6	Schindler's List	1993	8.9	
##	7	7	The Lord of the Rings: The Return of the K	2003	8.9	+
##	8	8	Pulp Fiction	1994	8.9	
##	9	9	The Lord of the Rings: The Fellowship of t	2001	8.8	_
##	10	10	The Good, the Bad and the Ugly	1966	8.8	1.121
##	11	11	Forrest Gump	1994	8.8	
##	12	12	Fight Club	1999	8.8	
##	13	13	Inception	2010	8.7	
##	14	14	The Lord of the Rings: The Two Towers	2002	8.7	- ÷ -
##	15	15	Star Wars: Episode \overline{V} – The Empire Strikes	1980	8.7	
##	16	16	The Matrix	1999	8.7	_
##	17	17	Goodfellas	1990	8.7	1 m.
##	18	18	One Flew Over the Cuckoo's Nest	1975	8.6	
##	19	19	Se7en	1995	8.6	
##	20	20	Seven Samurai	1954	8.6	_
##	# v	vith	230 more rows			+

Analysis purpose

Linear Regression Estimation Interpretation Inference on slope Predicted values

Description, inference, interpretation, prediction

Analysis purpose

Linear Regression

- Estimation
- Interpretation
- Inference on slope
- Predicted values
- Model selection
- Prediction intervals
- Cross-validation

Description, inference, interpretation, prediction

Simulation-based, more emphasis on conceptual understanding

 $Z = \frac{X - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$ T l_{n-1}

Simulation-based, more emphasis on conceptual understanding

Sampling bias, misleading graphs, algorithmic bias, data privacy

... 124.2K

Examples from <u>Data Science in a Box</u>

Sampling bias, misleading graphs, algorithmic bias, data privacy

Cambridge Analytica: how 50m Facebook records were hijacked

Guardian graphic. *Arkansas, Colorado, Florida, Iowa, Louisiana, Nevada, New Hampshire, North Carolina, Oregon, South Carolina, West Virginia

Examples from <u>Data Science in a Box</u>

Sampling bias, misleading graphs, algorithmic bias, data privacy

Algorithms combined the data with other sources such as voter records to create a superior set of records (initially 2m people in 11 key states*), with hundreds of data points per person

These individuals could then be personalised advertising based on their personality data

Interview

'A white mask worked better': why algorithms are not colour blind

Ian Tucker

When Joy Buolamwini found that a robot recognised her face better when she wore a white mask, she knew a problem needed fixing

Sun 28 May 2017 13.27 BST

Joy Buolamwini is a graduate researcher at the MIT Media Lab and founder of the Algorithmic Justice League - an organisation that aims to challenge the biases in decision-making software. She grew up in Mississippi, gained a Rhodes scholarship, and she is also a Fulbright fellow, an Astronaut scholar and a Google Anita Borg scholar. Earlier this year she won a \$50,000 scholarship funded by the makers of the film *Hidden Figures* for her work fighting coded discrimination.

Examples from <u>Data Science in a Box</u>

Sampling bias, misleading graphs, algorithmic bias, data privacy

Workflow

"Start-to-finish" reproducible workflow

Data Science Workflow from <u>R for Data Science</u>

Intro Data Science

Computing

Technology for large data sets and reproducibility, primarily statistical programming

Computing toolkit in STA 199

RStudio®

- R Markdown / Quarto for write up
- Run Git commands using pointand-click interface
- Server-based RStudio*
 - Git already configured
 - Same set up for all students

*Çetinkaya-Rundel, M., and Rundel, C. (2018), "Infrastructure and Tools for Teaching Computing Throughout the Statistical Curriculum," The American Statistician, 72, 58–65,

GitHub

- Assign and submit assignments
 - Facilitates collaboration on group assignments
 - Course management using ghclass R package (or GitHub Classroom**)

**Fiksel, J., Jager, L. R., Hardin, J. S., and Taub, M. A. (2019), "Using GitHub Classroom to Teach Statistics," Journal of Statistics Education, 27, 100–119.

Assessing student learning

Types of assessments

- In-class exercises, computing labs, homework
- Exams, final project

Tips

- Provide scaffolding early on, particularly for code
- Give opportunities for practice before graded assignments

Design assessments to emphasize skills students will use in practice

Getting started

Consider the course learning objectives + the student population

- What statistics and computational skills do they have coming into the course? Are there prerequisites?
- Are students preparing for the workplace? Subsequent statistics courses? Both?
- What skills do they need to prepare for the next step?

Traditional **Intro Statistics** **Data Science**

Data Science in a Box

Collection of intro data science slides, assignments, and other resources by Mine Çetinkaya-Rundel

datasciencebox.org

Designing the Data Science Classroom

rstudio::conf(2022) workshop on teaching data science using R with Mine Çetinkaya-Rundel

Designing the data science classroom

- July 25 and 26, 2022
- **17:00**
- iii Maryland 3
- <u><u><u>Click here to register</u></u></u>

Overview

rstd.io/teach-ds-conf22

On this page

Overview

Learning objectives

Is this course for me?

Prework

RStudio Cloud

Instructors

C Edit this page Report an issue

Resources

Websites

- Data Science in a Box by Mine Çetinkaya-Rundel
- **Cetinkaya-Rundel and Maria Tackett**

Textbooks (free online)

- Horton
- Kim

Reports

- **Data Science for Undergraduates: Opportunities and Options**
- **Computing Competencies for Undergraduate Data Science Curricula**
- <u>The Two-Year College Data Science Summit</u>

<u>Designing the Data Science Classroom</u> rstudio::conf(2022) workshop by Mine

<u>Modern Data Science with R by Benjamin S. Baumer, Daniel T. Kaplan, and Nicholas J.</u>

Introduction to Modern Statistics by Mine Cetinkaya-Rundel and Johanna Hardin Statistical Inference Via Data Science (Modern Dive) by Chester Ismay and Albert Y.

Thank You!

Maria.tackett@duke.edu