More than Methods Preparing students for data-driven work outside the classroom

Applied Research & Education Seminar April 8, 2024

Image credit: Sketchepedia on Freepik

Maria Tackett **Duke University**

bit.ly/ares-more-than-methods

Courses I teach

Background and Motivation

Three principles

Challenges and next steps

Background and Motivation

Three principles

Challenges and next steps

2014 ASA Undergraduate Curriculum Guidelines

"...concepts and approaches for working with complex data...and analyzing non-textbook data."

"...students' analyses should be undertaken in a welldocumented and reproducible way."

ASA Undergraduate Guidelines Workgroup (2014), Curriculum Guidelines for Undergraduate Programs in Statistical Science

- "...construct effective visual displays and compelling written summaries" and "demonstrate ability to collaborate in team..."

2017 Curriculum Guidelines for Undergraduate Programs in Data Science

- "...work with data from a variety of sources and formats..."

"...exposure to and ethical training in areas such as citation and data ownership, security and sensitivity of data, consequences and privacy concerns of data analysis, and the professionalism of transparency and reproducibility."

De Veaux, R. D., Agarwal, M., Averett, M., Baumer, B. S., Bray, A., Bressoud, T. C., ... & Ye, P. (2017). Curriculum guidelines for undergraduate programs in data science. Annual Review of Statistics and Its Application, 4, 15-30.

"...data scientists must communicate to teammates as well as to those with less intimate knowledge of the project particulars."

Undergraduate research team

- in the Duke Institute for Brain Sciences
- each year
- Primary objective: Understand patterns of healthcare

Interdisciplinary team co-led with Dr. Nichole Schramm-Sapyta

5 - 7 undergraduate students + 1 graduate project manager

utilization and interactions with the criminal justice system to provide data-informed insights to community stakeholders

The data

Bookings	in	Cοι
----------	----	-----

unique_id	race	ethnicity	sex	age_in_2020	confined_date	release_date	charges	release_reason
100001	White	Nonhispanic	Μ	23	11/10/2019	11/12/2019	Theft	Sentence completed
100002	Black	Hispanic	F	20	2/15/2020	2/17/2020	Assault, Bulgary	Transfer
100003	Asian	Non- Hispanic	М	28	7/22/2020	7/25/2020	Burglary, Drug possession, Assault	Time served
•••	•••	•••	•••		•••	• • •	•••	•••
400001	W	Н	F	50	8/12/2020	8/13/2020	Fraud	Secure bond

The tables were generated by ChatGPT for illustrative purposes only.

unty Detention Facility

The data

Encounters with Health System

unique_id	race	ethnicity	sex	age_in_2020	encounter_date	chief_complaint	diagnoses
100001	White	Non-hispanic	М	23	9/20/2020	Headache	G44.0, R51
100002	Black	Non-Hispanic	F	20	10/5/2020	Cough	J44.9, R05, J20.9
							•••
400001	White	Hispanic	F	50	5/2/2020	Nausea	R11.0, R10.13, R11.9, R11.10, R11.12

The tables were generated by ChatGPT for illustrative purposes only.

The data

Bookings

unique_id	race	ethnicity	sex	age_in_2020
100001	White	Nonhispanic	М	23
100002	Black	Hispanic	F	20
100003	Asian	Non- Hispanic	М	28
400001	W	Н	F	50

The tables were generated by ChatGPT for illustrative purposes only.

Health System Encounters

unique_id	race	ethnicity	sex	age_in
100001	White	Non-hispanic	М	2
100002	Black	Non-Hispanic	F	2
•••				
400001	White	Hispanic	F	5

More than data analysis

- Turn community stakeholder questions into statistical inquiries Use a reproducible workflow, with clear and informative
- documentation
- Present results in reports and presentations to community stakeholders
- Take into account ethical considerations in every analysis decision
- Collaborate with teammates, project manager, and faculty

Goal: Narrow the gap

Data analysis in the classroom Data analysis in research, internships, and jobs

Goal: Narrow the gap

Data analysis in the classroom Data analysis in research, internships, and jobs

Three principles for modernizing a regression course

Provide opportunities for students to...

Principle 1: Regularly engage with complex (and relevant) realworld data and applications

reproducible data analysis workflow

Principle 3: Develop important nontechnical skills, specifically written communication and teamwork

- **Principle 2:** Develop the skills and computational proficiency for a

Build on skills from introductory course

The R Series

Statistical Inference via Data Science

A ModernDive into R and the Tidyverse

Chester Ismay Albert Y. Kim

Introduction to Modern **Statistics**

FIRST EDITION

Mine Çetinkaya-Rundel Johanna Hardii

OpenIntro

EDITION

Modern Dive

Introduction to Modern Statistics

Texts in Statistical Science

Modern Data Science with **R Second Edition**

Benjamin S. Baumer Daniel T. Kaplan Nicholas J. Horton

CRC Press Taylor & Francis Group

Modern Data Science with R

Data Science in a Box

Background and Motivation

Three principles

Challenges and next steps

STA 210: Regression Analysis

Students: ~100 who have taken introductory statistics, data science, or probability course (majors and non-

Class Meetings: 2 lectures with in-class activities and 1 lab

Teaching team: instructor, undergraduate and graduate teaching assistants

Assessments: labs, homework, exams, final group project

Learning objectives

By the end of the semester, students will be able to...

- relationships.
- limitations.
- control and collaboration.
- presentations.

analyze real-world data to answer questions about multivariable

use R to fit and evaluate linear and logistic regression models.

assess whether a proposed model is appropriate and describe its

use Quarto to write reproducible reports and GitHub for version

effectively communicate statistical results through writing and oral

Regularly engage with complex (and relevant) real-world data and applications

Principle 1

Real-world data and applications

- processing before analysis
- Goals:
 - Give students exposure to data wrangling required before most regression analysis in practice
 - Demonstrates how regression is used in variety of interesting and relevant contexts
- Where: lectures, in-class activities, assignments

• "Real-world": relevant and messy data that require some pre-

Example: LEGO themes in-class activity

Students use data from Peterson and Ziegler (2021) to explore strategies to collapse levels of categorical variable

Original

Peterson, A. D., & Ziegler, L. (2021). Building a Multiple Linear Regression Model With LEGO Brick Data. Journal of Statistics and Data Science Education, 29(3), 297-303.

Examples of student strategies

Example: Assessing independence

Students consider potential spatial dependence in North Carolina voting data from the 2020 presidential election

Example: Assessing independence

Students examine potential spatial dependence in residuals

- Briefly explain why we may want to view the residuals on a map to assess independence.
- Briefly explain what pattern (if any) we would expect to observe on the map if the independence condition is satisfied.
- Is the independence condition satisfied? Briefly explain based on what you observe from the map.

Principle 2

Develop the skills and computational proficiency for a reproducible data analysis workflow

Computing toolkit

R Studio®

- Quarto for assignment writeups
- Run Git commands using pointand-click interface
- Server-based RStudio*
 - Git already configured
 - Same set up for all students

*Çetinkaya-Rundel, M., and Rundel, C. (2018), "Infrastructure and Tools for Teaching Computing Throughout the Statistical Curriculum," The American Statistician, 72, 58–65,

GitHub

- Assign and submit assignments
- Facilitates collaboration on group assignments
- Course management using ghclass R package (or GitHub Classroom**)

**Fiksel, J., Jager, L. R., Hardin, J. S., and Taub, M. A. (2019), "Using GitHub Classroom to Teach Statistics," Journal of Statistics Education, 27, 100–119.

Motivating why reproducibility matters

- Lecture introducing reproducible workflow and computing toolkit
- 2022) and were asked their ideas to make the process reproducible

Save data in format they know will hold all their data

Use "intervention" and "usual" instead of 0 and 1

Have people review the spreadsheet

Ostblom, Joel, and Tiffany Timbers. 2022. "Opinionated Practices for Teaching Reproducibility: Motivation, Guided Instruction and Practice." Journal of Statistics and Data Science Education 30 (3): 241–50. https://doi.org/10.1080/26939169.2022.2074922.

 Students study a case in which lack of reproducible practices had significant negative consequences (Ostblom and Timbers,

> Enter data in an automated way

Clearly mark missing data

Document how they address missing data

Reproduce an analysis

- Students work in groups to reproduce one model from an article in a scholarly journal
- They are asked what could have made the process easier

Having a codebook

Consistency between provided data and the description

Knowing more about authors' thought process

Fixing typos

Being able to use the same software

Consistency in how variables are handled

> Using informative variable names and categories

Develop important nontechnical skills, specifically written communication and teamwork

Principle 3

Teaching written communication

Professional visualizations, output, and reports

Accurate interpretations and conclusions

Effective communication

Document formatting and presentation

Points on each assignment for... Writing all responses as cohesive narrative

Clearly organized document

Neatly formatted tables and output

Informative titles and axis labels for visualizations

"What's the 'so what'?"

- Goal is for students to get beyond basic interpretation to...
 - writing interpretations in a meaningful way
 - summarizing results to draw conclusions
- student misunderstanding
- Do this first in short assignment questions and eventually in final project

Assess analysis and summary separately to more easily identify

Example: King County, WA houses

Students analyze data about the price and other characteristics of houses in King County, Washington

- Make a visualization of the price versus square footage with the points differentiated by waterfront. Interpret the visualization
- Fit a model with the log-transformed price (see the previous lab to see why we use log-transformed price!) as the response and sqft, waterfront, and their interaction as the predictors.
- Interpret the effect of square footage on the price of a house for
 - houses with no waterfront view
 - houses with a waterfront view

Conceptual understanding

Example: King County, WA houses

Students analyze data about the price and other characteristics of houses in King County, Washington

Use the results from the previous questions to write a short paragraph (~ 3–5 sentences) about the relationship between square footage and the price of houses in King County, WA, and how (if at all) the relationship differs based on whether the house has a waterfront view. The paragraph should be written in a way that is practical and can be easily understood by a general audience of home buyers.

Effective communication

Addressing challenges

Finding data accessible to new learners

Assessing writing

Training teaching team

- transformations
- class
- multiple people
- discussions about grading

Many data sets fail model conditions / require

Opportunity to get students excited about later units in the course and get exposure to realistic decision-making

• Difficult to provide detailed individual feedback in large

Provide feedback on shorter writing exercises

Challenging to guarantee consistency in grading across

Utilize detailed rubrics and regular meetings for

Include data ethics as a core learning objective for the course

Artificial intelligence

Additional information

Article **Three Principles for Modernizing an Undergraduate Regression Analysis Course** Maria Tackett 🔽

Pages 116-127 | Published online: 02 Mar 2023

66 Cite this article https://doi.org/10.1080/26939169.2023.2165989

- STA 210: Regression Analysis Fall 2023 course website: <u>sta210-fa23.netlify.app</u>
- Alexander, R. (2023). <u>Reproducible Workflows</u>. *Telling Stories with Data*. CRC Press.

doi.org/10.1080/26939169.2023.2165989

• Beckman, M. D., Çetinkaya-Rundel, M., Horton, N. J., Rundel, C. W., Sullivan, A. J., & Tackett, M. (2021). Implementing version control with Git and GitHub as a learning objective in statistics and data science courses. Journal of Statistics and Data Science Education, 29, 132-144.

• Cetinkaya-Rundel, M. (2020), "Data Science in a Box," available at www.datasciencebox.org

Thank you!

maria.tackett@duke.edu

Image credit: Sketchepedia on Freepik

bit.ly/ares-more-than-methods

Resources for finding data

- <u>OpenIntro</u>
- <u>TidyTuesday</u>
- FiveThirtyEight
 - <u>GitHub repo</u>
 - <u>R package</u>
- Data is Plural

STA 210 Course topics

Linear regression	Logistic regression	Looking ahead
Fitting and interpreting linear regression models	Fitting and interpreting logistic regression models	Topics to introduce students to methods beyond the course
Inference	Inference	Missing data imputation
Model conditions and diagnostics	Model conditions and diagnostics	Longitudinal modeling
Categorical predictors, polynomial predictors, interaction terms	ROC curve	Time series
Variable transformations	Prediction and classification	Poisson regression
Model selection	Model selection	Ordinal regression
Feature engineering*	Introduction to multinomial logistic regression	
Cross validation*		

